If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+144
We move all terms to the left:
20-(-16t^2+144)=0
We get rid of parentheses
16t^2-144+20=0
We add all the numbers together, and all the variables
16t^2-124=0
a = 16; b = 0; c = -124;
Δ = b2-4ac
Δ = 02-4·16·(-124)
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{31}}{2*16}=\frac{0-16\sqrt{31}}{32} =-\frac{16\sqrt{31}}{32} =-\frac{\sqrt{31}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{31}}{2*16}=\frac{0+16\sqrt{31}}{32} =\frac{16\sqrt{31}}{32} =\frac{\sqrt{31}}{2} $
| 3x=(1/4)x^2+5 | | 2x-10=20+4 | | 29x-28x=0.0855 | | -x-1=1-x | | X^2-3d=0 | | 5n+5=80+5n | | Y=3/x-10 | | -H(t)=16t^2+80+4 | | -8=-1/2x+-55 | | 9i-27=12-4i | | 14y−2=−2(−7y+1) | | 4a=3(a+1)+4 | | √x+14−√2x+5=1 | | -9x-30=5x-6 | | 12x^2+58x+56=0 | | 4+n=4-8n | | 5(x+3)=7x+7-2x+8 | | W(9)=-2n-2 | | 3y^2-8y+35=0 | | 2x+3+5x-10=63 | | -6=u/4-2 | | 3x+5=6×-14 | | 0.5x-5=0.1(x=30) | | h+15=h-34 | | G(-3)=3t+4 | | -5+7y=-y+43 | | -56=-v+4(3-4v) | | -2(v-5)=-6v+46 | | 10k-7=34 | | 20x^2+25x=26x^2+4x-27 | | 5x+5-4x=9+2x-7 | | x−x−13−2x−55+x+86=7 |